You are here: Home / HPRC Blog

Filed under: Training

Best time to exercise

Is there an ideal time of day for exercise?

The best time of day to exercise is the time when you can maintain a consistent exercise routine—not necessarily the same time for everyone. You also might experience better training adaptations when you exercise consistently at a regular time. For example, if you work out at noon every day, your body will adapt to perform at its best at noon.

Above all, exercise should be enjoyable. After all, if you don’t enjoy it, you’re less likely to keep up with it. So here are a few things to keep in mind about making exercise fit into your schedule.

Morning. It might be easiest to maintain a consistent exercise regimen by starting your day with a workout. Other things that come up during the day can affect your plans to work out later in the day, and motivation often fades as the day progresses. However, since your body and muscle temperatures are lower in the morning, it’s especially important in the morning to warm up properly before exercise.

Afternoon. Optimal adaptations to weight training seem to occur in late afternoon. Levels of hormones such as testosterone (important for muscle growth in men and women) and cortisol (important for regulating metabolism and controlling blood pressure) seem to be at optimal ratio later in the day. For some people—because hormone levels vary from person to person—lifting later also might be more beneficial because their testosterone can respond better to resistance exercises. 

Evening. The biggest caveat about exercising in the evening is how it will affect your sleep. Everyone is a little different. Some people can exercise right before bed and have no trouble sleeping. For others, it can make it difficult to get a good night’s sleep. There are lots of factors that can affect your sleep. Experiment to see what works for you.

Remember that other factors such as your work schedule, fitness goals, current diet, and sleep habits also affect your workout routine and physical performance. But whether at the end of the day (or in the morning or afternoon), a consistent exercise routine is the best routine.

If the shoe fits—Part 3: Tying your shoelaces

Filed under: Gear, Running, Training
Find out how to lace your running shoes for a better fit.

This third and final article in HPRC’s series about running shoes “ties” everything together. Although there are lots of different ways to tie them, the traditional way sometimes doesn’t cut it. Is your heel slipping? There’s a lace-up for that. Do you have a hot spot? There’s a lace-up for that. Check out the videos below for shoelace-tying fixes to 3 common foot problems:

Heel lock. What are those extra eyelets at the top of your shoes? Use those eyelets and this heel-lock method to secure your foot, without having to tighten the rest of your shoelaces.

Black toenails. Are your toenails turning black and blue? Tie your shoelaces to help pull the shoe away from your toes, giving them more wiggle room. Remember: The lace ends don’t have to be even once you start lacing your shoes. The diagonal lace can be a little shorter to start with, but leave enough so you can finish tying your shoes.

Hot spot or high arches. Is there a sore spot on the top of your foot? Or do you have high arches? Lace around painful areas—not over them—by moving the laces up or down, depending on where the irritation is located.

If you haven’t seen them yet, be sure to read Part 1 and Part 2 of the running-shoe series.

Olympic lessons for career-defining moments

HPRC Fitness Arena: Mind Body, Total Force Fitness
It’s time for the Summer Olympics! What can you learn from Olympians about performing when facing a career-defining moment?

Olympians can teach the rest of us how to perform our best during career-defining moments. While we all can’t compete in the Olympic Games, we can relate to those instances when the pressure’s on and it’s time to perform.

What helps Olympic athletes meet or exceed expectations? Successful team members train together, receive helpful support from friends and family, develop sharp mental skills, stay focused, and honor their commitment to the task and each other. Teams that fail to meet expectations lack experience and have problems bonding. And they tend to face planning or travel issues, problems with coaching, distractions, and commitment issues. Often the best you can do is set routines that guide your attention to actions—within your control—whether you’re an Olympian or someone who values achievement.

Just like your career-defining event only happens once or a few times during your career, athletes know the Olympic Games are unique, rare, and unlike other events. They understand what they’re doing is important. And they’re in the public eye, facing new distractions everywhere.

They’ve spent an extraordinary amount of time preparing and planning for these big events too. It’s natural for an athlete to think, “This is the first time I ever...” Being a “favorite” can come with even more pressure and thoughts such as, “Don’t screw up!”

Nearly all Olympic athletes experience nerves. However, they can experience “butterflies” as excitement to some degree, rather than nervousness. Facing nervousness can be more effective than fighting it or pretending it’s not there. When Olympians or you—during career-defining moments—shift focus to little action plans within your control, gold medals and big successes can be wonderful by-products.

DOMS: Post-workout delayed muscle soreness

A tough workout can leave you sore for days. Find out how to prevent and reduce delayed onset muscle soreness (DOMS).

Muscle pain a day or so after exercise—known as delayed onset muscle soreness (DOMS)—is common among athletes. Do you wonder why this happens—even when your workout went great—or what you can do about it?

DOMS results from damage to muscle fibers that occurred during exercise. You might experience DOMS after a hard workout, or even simple activities such as running and/or walking downhill or jumping. It also can occur when you’re starting a new workout routine or just getting back into shape after an illness or injury. The good news is DOMS can be treated at home—and sometimes prevented—with simple techniques, including stretching, protein/carbohydrate recovery drinks, and cold-water immersion. Sports massage and foam rolling can help reduce muscle soreness too.

Over-the-counter medications also can provide some relief. But use these at the lowest effective dose. Visit your doctor if the pain worsens or swelling occurs. In the meantime, read HPRC’s article, “Delayed Onset Muscle Soreness,” to learn about the difference between DOMS and other musculoskeletal pain.

Train in the heat, perform at altitude?

Learn how training in the heat might help you prepare for performance at altitude.

Can you train in the heat to improve your performance at altitude? The answer is “sort of.” “Cross acclimation” or “cross tolerance” is the idea that exposing yourself to one environmental condition can help you adapt to another one as long as they have certain things in common.

As it turns out, this is the case for heat and hypoxia (low oxygen). This is important because athletes and service members can be exposed to altitude without prior or sufficient acclimatization. Altitude sickness can cause several problems, especially decreased performance. But some evidence shows that this method of training in hot conditions to prepare for altitude can actually work.

If you climb to the top of a mountain, there’s less air and less pressure. And you’re getting less oxygen with each breath. This can be simulated at sea level (in special labs) where pressures are normal, but the amount of oxygen in the air is reduced (fake altitude).

However, there’s a bit of a catch. Training in the heat under artificial low-oxygen conditions—normobaric hypoxia or “fake altitude”—involves normal pressure, which is different from “real altitude” or hypobaric hypoxia, which involves reduced oxygen at low pressure. The difference is in the pressure.

So, do these two environments cause the same types of physiological changes? There are several other factors involved in real-altitude acclimatization that might not be accounted for at fake altitude, so the jury’s still out.  

Training in the heat might prepare you for performance at altitude—to a point. Ideally, if you’re going to be at altitude, try to acclimatize yourself as much as you can.

What surface is best for running?

Runners often hear the suggestion to “run on softer surfaces to save your knees.” When it comes to running and injury prevention, does surface matter?

The truth is that the jury’s still out on whether running on a softer surface has less impact on joints and muscles. Some research suggests it might not actually matter, and the forces that impact your lower body on various surfaces such as asphalt, concrete, and grass don’t increase knee pain or injury risk. One explanation is that your body automatically adapts to the surface you’re running on. That means you’ll instinctively strike harder on softer surfaces, and strike softer on harder surfaces. On the other hand, some evidence suggests that running on softer surfaces (such as grass) reduces stress on your muscles and joints.

“But it feels better when I run on soft surfaces,” you might say. That difference in feeling is likely due to the different kinds of muscles, or stabilizers, you use when running on softer surfaces, which creates a sensation of less impact, although the overall impact on your body is the same.

That’s not to say that you shouldn’t run on soft surfaces if it makes you feel better. Feeling better on a run goes a long way. However, softer surfaces such as trails, grass, or sand tend to be more uneven, which can pose a greater risk of strains and sprains.

When it comes to injury prevention and recovery, it’s also important to consider other factors such as wearing the right running shoes. And be sure to increase your running intensity and volume gradually to help avoid injury too. 

PFT/PRT prep—Part 1: Aerobic conditioning

The PFT/PRT is designed to test your cardiovascular endurance and muscular strength. In this three-part series, HPRC takes a closer look at each component, offers tips on training optimization, and suggests how to prevent common training-related injuries.

Preparation for your Physical Fitness (PFT) and Physical Readiness Tests (PRT) takes time and discipline. Training for the test isn’t something you should start the month before the test, and the habits you develop leading up to the test should be ones you continue even after the test. Weekend warriors and procrastinators are at greater risk for injury, and it’s likely that your performance will be less than optimal when it comes time for the test.

If you’re just getting back into shape, be sure to do it gradually. Once you’ve resumed a regular exercise routine, you might notice some aches and pains. Listen to your body. Watch out for symptoms of common athletic injuries such as overuse injuries and knee pain. It’s important to address these issues early to minimize any damage and get you back in action as soon as possible. Maintaining your exercise routine after the PFT/PRT and challenging yourself along the way will keep you in warrior-athlete shape year round and prevent deconditioning.

HPRC provides a series of articles with guidelines to help you prepare for the PFT/PRT, beginning with this one on aerobic conditioning. Read more...

One-Rep-Max for strength

Lifting weights helps you stay strong and perform well. Learn how to boost your muscular strength and endurance.

How do you know how much weight to lift when you start a resistance-training program? Most programs are designed around lifting a percentage of your maximum strength.

First, you need to find out what your maximum strength is. A popular method is the one-repetition maximum test (1RM): the most weight you can press once but not twice. You can also do multiple-repetition tests for a reliable estimate of maximum strength. A 5-repetition test seems to be accurate, but more than 10 reps is unreliable.

This instructional video demonstrates the American College of Sports Medicine’s (ACSM) protocol for a 1RM test. ACSM’s protocol can also be applied to a multiple-repetition test. For example, determine the most weight you can lift 5 times, but not 6 times, for a 5-rep max test. If you have doubts about whether this is the right test for you, be sure to consult a healthcare professional.

The second step is to determine what amount of weight—as a percentage of your 1RM—you should use to improve your muscular strength and endurance. Typically, your muscular strength should improve if you use 60–80% of your 1RM. You should be able to improve your muscular endurance using about 50% of your 1RM. Once you’ve assessed your maximum strength, use this conversion chart from the National Academy of Sports Medicine (NASM) to determine your 1RM percentages.

Happy lifting!

How to avoid stress fractures

Painful stress fractures can hurt your workout routine too. Learn more about training safely.

An important thing to know about stress fractures is how to avoid them. A stress fracture is a tiny crack in a bone that happens when your muscles can’t absorb shock and transfer stresses to the bone. Most occur in the lower extremities, especially the lower leg and foot.

A stress fracture is usually an overuse injury that develops over a long period of time—from weeks to months. They’re especially common among military recruits, in about 3% of men and 9% of women. And since it can take several weeks to months for a stress fracture to heal, the best approach is to avoid getting one. Here are some tips for prevention:

  • Use the progression principle of training: Gradually increase your training intensity, usually by no more than 10% weekly if you exercise 3 or more days a week. Slowly incorporate higher-stress activities such as jumping and interval training into your workout. Set incremental goals to help you develop your training routine step-by-step.
  • Check your footwear and make sure it matches your training routine. Replace old or worn footwear.
  • Check your form. Are you moving properly when you exercise or does your form put you at risk of injury?
  • Pay attention to early signs of injury. Unusual muscle soreness and other aches and pains can be a sign of injury and/or imbalances that could worsen if they aren’t addressed early.
  • Monitor your diet, specifically calcium and vitamin D intake. To learn more, read the National Institute of Health’s Dietary Supplement Fact Sheet on calcium and HPRC’s article on vitamin D.

It’s important to recognize a stress fracture and get medical help early, as described by the American Academy of Orthopaedic Surgeons. The Mayo Clinic provides more information on symptoms. And check out HPRC’s Injury Prevention section for more on how to avoid injury.

Pull-up: Train above the bar

HPRC recently designed a training program to help you achieve your first pull-up. Check it out!

Since pull-ups are tough and require a lot of strength, HPRC just created a training program to help you meet the challenge. Achieving a pull-up might be easier for some, but more difficult for others, especially women. Other factors such as body fat, arm length, and height can affect your ability to achieve a pull-up too.

But what that means is—with the right training—you can do it! Check out HPRC’s Pull-up Progression Program for exercises aimed at increasing your strength and helping you achieve your first pull-up.

RSS Feed