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ABSTRACT

This review describes the most important factors affecting military work
performance while wearing a CB mask: 1) the additional inspiratory and
expiratory breathing resistance; 2) increased external dead space; 3) thermal
stress of the mask and hood; 4) restriction of functional vision; 5) hinderance of
speech transmission and reception; 6) weight, size and pressure on the face by
the CB mask; 7) claustrophobic reactions and 8) sleep loss and lack of nutrient
intake due to long-term wear. In assessing the biomedical aspects of these
factors, rather than making comparisons between specific models of CB masks

the review addresses these factors as they apply to CB masks in general.
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INTRODUCTION

Soldiers are provided with individual protective garments to guard them
from nuclear, biological and chemical (NBC) contamination. A key item of
these protective garments is the chemical and biological protective mask (CB
mask). CB masks can provide respiratory protection against radioactive
particles and field concentrations of all known chemical and biological agents in
both vapor and aerosol form.

The first employment of CB masks in warfare was during World War 1(17).
Initially, German soldiers were equipped with the "face mask of the Gent zone."
This mask consisted of a cotton dressing sewn to a cloth the size of a
handkerchief; the cotton dressing was soaked in alkaline sodium thiosulfate prior
to use and the mask had to be kept moist during use. After the first major
attack with Chlorine gas at Ypres (leper), Belgium in April 1915, the German
Army issued the forerunner of the modern gas mask. It consisted of an oiled
leather, bag-shaped mask with a filter which screwed to the body of the mask.
Straps held the mask against the face. The British developed and issued their
Small Box Respirator, which consisted of a rubber facepiece holding two glass
eyepieces and a breathing tube which was connected to a filter-box. The French
developed their own filter-box respirator called the Tissot. The U.S Army was
mainly equipped with the British Small Box Respirator but, owing to its high
resistance to breathing, the U.S. modified the French mask, and late in the war
issued the lower resistance American Tissot mask.

Concurrent with the employment of the CB mask, the physiological and
psychological burdens of CB mask wear began to emerge. The most important
parameters affecting military work performance with a CB mask include: 1) the

additional inspiratory andfor expiratory breathing resistance; 2) increased



external dead space; 3) thermal stress of the mask and hood; 4) restriction of
functional vision; 5) hindrance of speech transmission and reception; 6) weight,
bulk and pressure on the face and head of the respirator and its straps; 7)
claustrophobic reactions and 8) sleep loss and lack of water and nutrient intake
associated with long-term wear. This report’s objective is to present a review of
these factors, and how they can degrade the soldier's ability to perform military

tasks.

L. ADDED RESISTANCE TO BREATHING

Resistance Standards for CB Masks. The healthy adult has an average

airway resistance of 0.8 cmH20°l'l°s’l. By contrast, the typical modern CB
mask produces about a four-fold increase in the resistance to breathing.
Although an early recognized limitation of the CB mask was its inspiratory and
expiratory resistance, the development of standards for acceptable levels of
breathing resistance of CB masks did not occur until World War II. Several
studies by Silverman et al, (57,58) investigated the effects of breathing against
added resistance while working at various rates on a cycle ergometer. Healthy
male subjects exercised for 15 minute periods at work rates ranging from 68 to
180 watt (W) with added inspiratory resistances ranging from 0.4 to 7.5 cm HpO-
I-l:s-l, (CB mask airflow resistance is typically measured at an airflow of 85
lI'min-1. However, many of the resistances reported in this text were measured
between 30 to 100 l'min-! airflows). Increases in the resistance to breathing
resulted in decreased submaximal oxygen uptake and minute ventilation at work
rates above 135 W. Most subjects were able to tolerate the increased resistance
provided the total respiratory work required to breathe through a mask (usually
calculated by integration of the instantaneous product of pressure and flow) did
not exceed 0.41 W at the low workloads and 2.2 W at the high workloads. These
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data have provided the basis for most modern military CB mask design criteria
and certification tests.

In 1960, Cooper (10) suggested standards of resistance which he expressed
as the rate of respiratory work done on a breathing apparatus per minute
ventilation. The maximum respiratory work rate done on a mask expressed in
kgm'min-l was arbitrarily set at one- fourth of the minute ventilation expressed
in l'min'l (e.g., if the minute ventilation is 40 l-min'l, then the maximum rate of
respiratory work done on a mask should not exceed 10 kgm-min"l (1.6 W)). Since
Silverman et_al. (57) had suggested lower levels of respiratory work, Cooper
acknowledged that this standard may represent an excessive resistance and that
the ideal mask may have a resistance one-half of this standard. However,
Cooper believed that with training in breathing against resistance and improved
physical condition, subjects could tolerate this level of respiratory work.
Thirteen years later, Bentley et al. (6) re-evaluated tolerance to added
resistance to breathing in 158 mine rescue workers during exercise. The exercise
consisted of a 30-minute walk on a treadmill with the work rate altered between
subjects to obtain a wide range of minute ventilations. The added inspiratory
resistance ranged from 2.4 to 21.0 cm HzO'l-l-s-l. After completion of the
exercise, each subject selected one of four statements which most closely
described his sensation of the effect of the resistance on his breathing. The
results indicated that both the peak inspiratory pressure and the inspiratory work
rate per liter of inspired air were closely correlated with the sensation of
dyspnea (shortness of breath). From these data, Bentley et al. (6) formulated a
standard for acceptable resistance such that 90% of the population tested would
not experience dyspnea. They determined that the level of external respiratory

work done on a mask should not exceed 1.7 J-l'l of inspired air or under steady



flow conditions, the pressure drop across the inspiratory valve and filter should
not exceed 17.0 cm HO. This level of tolerable external respiratory work is
below those suggested by Cooper (10), but above those derived by Silverman et
al. (57).

Given the pressure-flow characteristics of several different CB masks (U.S.
MI17Al, M25, XM40; British S6 and Netherlands C-3) and applying Sentley et al.
(6) results one can predict that discomfort in breathing would be experienced by
10% of the wearers at minute ventilations ranging from 55 to 39 l-min-l. These
minute ventilation levels are commonly attained during moderate to heavy
intensity exercise and may represent the threshold above which the widespread
development of dyspnea may impair soldier work performance.

Respiratory Responses to Loaded Breathing. The physiological

mechanism(s) by which added resistance to breathing impairs work performance
is potentially complex. Several studies (9,18,27) have investigated the effects of
added resistance applied to inspiration and/or expiration during exercise at
various intensities. With increasing added resistance to breathing, minute
ventilation and endurance time decreased at each level of exercise. The
reduction in ventilation was directly proportional to the increase in resistance.
Hermansen et al. (27) noted that ventilatory rates were lower with the CB mask
on and rose to only 30 breaths'min-! during exercise. Maximal oxygen uptake
(\.102 max) was reduced, but the relationship between oxygen uptake and

submaximal workload (>75 percent of Voz max) was not altered. However,

there was no clear evidence that an additional shift to anaerobic metabolism
occurred. When breathing through added resistance, the relative hypoventilation
resulted in an increase of alveolar carbon dioxide, which may impair the capacity
for work (via a mixed metabolic and respiratory acidosis). Cerretelli et al. (9)
also opserved that at the highest levels of exercise the work could no longer be

4



tolerated when the intrathoracic pressure difference between inspiration and
expiration exceeded 100 cm HO. They speculated that when intrathoracic
pressure swings approach this level, some protective mechanism intervenes to
limit the respiratory work.

Demedts and Anthonisen (18) observed that at each level of added
resistance, maximum exercise ventilation was about 70 percent of the 15 sec
maximum voluntary ventilation measured with that resistance. Second, in four
of the five subjects they examined, an important relationship was observed
between these individuals' ventilatory response to CO7 and the degree of their
respiratory effort while breathing against added loads. When breathing was
opposed by added resistance, subjects with low CO2 sensitivity minimized their
ventilatory effort and let their alveolar CO; rise; in contrast, those subjects
who were most sensitive to CO7 increased their respiratory work and maintained
alveolar CO7 near normal. Consequently, by increasing their minute ventilation,
the latter subjects' exercise intensity and duration were more limited by the
added resistance. The authors concluded that the exercise limitation imposed by
added resistance to breathing depends both on the ventilatory limitations
produced by the resistance and on the CO3 responsiveness of the individual.

Several investigators (14,29) have shown that this limitation of ventilation
during exercise results from attempts to minimize the total respiratory work by
reducing the expiratory duration (Tg) in order to prolong the inspiratory duration
(TP of each breath. Since the CB mask produces its greatest resistance to
breathing during inspiration, this strategy reduces inspiratory work while letting
expiratory work increase slightly. Johnson and Berlin (29) demonstrated in 10
subjects that a minimum TE of 0.66 s corresponded to the voluntary termination
of exercise. However, Stemler and Craig (62) observed a variable Tg at the
termination of exercise. They suggested that the minimal Tg attained is more a
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function of expiratory resistance than a general limitation on expiratory
performance. Expiratory resistance of CB masks can be increased by hood
designs which increase protection against agent penetration by incorporating a
"neck dam". Still, when wearing a CB mask, minute ventilation can increase in
response to the metabolic demands of the exercise until a minimum Tg is
reached. Thereafter, minute ventilation falls below the metabolic needs of the
individual and impairs continued exercise performance.

When breathing is opposed by resistance loads, the ventilatory responses
are regulated by the combined actions of mechanical load compensation intrinsic
to the respiratory muscles and neural load compensation which are extrinsic to
the muscles (3). In conscious humans, the ventilatory response to resistive
loading is also modulated by neural responses mediated by conscious perception
of the added load (3,65). The CB mask opposes breathing by applying a non-
linear, phasic, flow-resistive load. It is further defined as a passive load since
the respiratory muscles must develop forces to overcome the load. Axen et al.
(3) analyzed ventilatory responses to 10 consecutively loaded (range 10-45 cm
H20'1_l‘s-l) inspirations. The first breath response to the added resistance was
an increased duty cycle (T[/TT) due to a lengthened Ty, and a decreased mean
inspiratory flow (V1/Ty) caused by the reduction of V1. Consequently, minute
ventilation was reduced. During subsequent breaths, minute ventilation
progressively increased toward control levels due principally to augmentation of
mean inspiratory flow (increased VT), suggesting an increase in neural drive to
the respiratory muscles. These ventilatory adjustments to added resistance
probably represent the combined action of intrinsic muscle properties, extrinsic
neural load compensation, and consciously mediated responses as well as the

chemical drive for ventilation.



Minute ventilation is dependent upon the transformation of central
respiratory drive into muscle force which acts upon the chest wall. The chest
wall is divided into two parts, the rib cage and abdomen. Three principal muscle
groups act upon the rib cage and abdomen to displace them: the intercostal
muscles, the diaphragm and the abdominal muscles. A recent study (40)
reported that the rib cage (intercostal muscles) contribution to tidal volume
increased significantly, from 63% during quiet breathing to 78% when inspiring
through added resistance. The authors suggested that there was a greater
recruitment of the rib cage inspiratory muscles than the diaphragm during
resistive loading, although intrinsic properties of the chest wall musculature may
also have contributed. Furthermore, the authors observed an increased mean
expiratory flow rate following the loading inspiration. This enhanced emptying
was attributed to a reduction in expiratory-braking by the rib cage inspiratory
muscles.  These observations suggest that during mechanical loading of
inspiration the distribution of respiratory motor activity is altered.

A potential consequence of prolonged work while wearing a CB mask is
respiratory muscle fatigue. During exercise with no opposition to breathing,
ventilatory muscle endurance does not appear to constitute a limitation to
exercise performance (7). However, the work of breathing increases as the
resistance increases. The greater the fraction of the maximum inspiratory
muscle force developed to breathe across a resistance, the greater the energy
demands of the muscle. Several studies have found that development of
diaphragm fatigue was dependent upon both the relative tension developed (53)
and the duration of the contraction (5). More recently, McCool et al. (38)
determined that the velocity of muscle shortening, as characterized by

inspiratory flow, also influences the endurance of the inspiratory muscles.



Although it has been speculated that respiratory muscle fatigue is a limiting
factor of work performance when wearing CB masks, this relationship has not
been demonstrated.

As stated earlier, in conscious humans the ventilatory response to
mechanical loading is also modulated by neural responses mediated through
conscious perception of the added load (3). Using the psychophysical technique
of scaling, it is possible to assess subjects' performance in judging the magnitude
of respiratory sensations (47). Results of several studies suggest that signals
related to respiratory muscle force generation (2) and motor command (8)
contribute to the sensation of respiratory loads.

Perceptual performance during a scaling task is very reproducible within a
given subject, but varies greatly between different subjects (32). Little is known
concerning the important question of whether or not an individual's sensitivity to
respiratory sensations influences how he regulates ventilation when breathing is
opposed. Two studies (23,46) have demonstrated a relationship between subjects'
sensitivity to respiratory sensations and ventilatory load compensation. Their
results suggest that subjects who have a greater sensitivity in scaling added
inspiratory loads are better able to preserve their ventilation when unexpectedly
confronted with an added load. The wide range of perceptual performance
observed in the healthy adult population may account for the reported variability
between subjects in the degree of discomfort felt and the tolerance to exercise
under similar conditions of physical stress while breathing through a CB mask.

Cardiovascular Responses. Several studies have evaluated the

cardiovascular responses to loaded breathing. Hermansen et al. (27) reported
that average heart rates during submaximal exercise were higher when wearing

the M19 CB mask, but were similar at maximum exercise intensity to those



obtained without added resistance to breathing. Conversely, Van Huss et al. (63)
reported reduced exercise heart rates with CB mask wear. Furthermore, the
exercise heart rates were inversely related to the magnitude of the added
resistance to breathing. Lerman et al. (35) observed similar heart rate responses
during short duration, high intensity exhausting exercise. As the magnitude of
the inspiratory resistance increased from 0.3 to 4.6 cm H20°1—1-s_1, the heart
rates at the end of each run decreased from 190 + 2 to 135 + 2 beats * min'l.
Other studies (45,51) have reported no differences in exercise heart rates
associated with CB mask wear. The physiological mechanism(s) responsible for
the heart rate alterations is not clear. Possibly, the larger intrathoracic
pressures occurring with CB mask wear enhance venous return and therefore
stroke volume resulting in lower heart rate via the baroreflex.

Blood pressure responses during exercise appears to be unaltered by CB
usage. Two studies (35,51) reported no significant differences in systolic blood
pressure measurements during short-term fatiguing exercise. However, in a
third study (61) a 24 percent increase in recovery systolic blood pressure was
reported when wearing CB mask during a Harvard Step Test. This result
suggests increased cardiovascular stress during exercise with CB mask usage.

Exercise Performance Limitations. Many studies have investigated the

exercise performance decrement that can be attributed to CB mask wear. With
tasks that demand a high percent of maximal aerobic power, performance seems
to be dependent on breathing resistance (30). Cummings et al. (15) reported that
wearing a CB mask increased the time to accomplish a one-half mile run by 11%.
Lotens (37) found a 16% performance decrement during 400 m and 3 km runs
while wearing the C-3 respirator and he notes that similar results were obtained
during British studies of their S-6 respirator. Several studies (12,35) have
demonstrated that any amount of added resistance to breathing causes a
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decrease in exercise endurance and performance. Most studies have tested work
performance of men wearing masks using both fixed task-variable rate and fixed
rate-variable time end points. A different approach to evaluating work
performance is the use of perceived exertion or sense of effort to set and adjust
exercise intensity.

Pandolf and Cain (49) demonstrated that when subjects maintain exercise
at a constant sense of effort, they decrease the intensity of the exercise over
time. The relationship between exercise intensity and exercise duration is
known as a constant effort function. Recently, we studied constant effort
dynamic cycle exercise (for 20 minutes) in order to learn whether the constant-
effort functions were affected by added inspiratory resistance (5.8 cm HO-
l'l-s'l). Preliminary results demonstrate that with minimal inspiratory
resistance (1.0 cm Hzo-l'l-s'l) the constant-effort functions declined
approximately 20% during the initial eight minutes of exercise and then
remained relatively constant. With the added inspiratory resistance, the
constant-effort functions followed a similar pattern for the initial eight minutes
but then continued to decline throughout the exercise period reaching a power
output that was approximately 30% below the starting level. The subjects also
performed maximal exercise tests with the same minimal and increased
inspiratory resistance levels. Although increased inspiratory resistance caused a
significant reduction of peak minute ventilation, the maximal oxygen uptakes
and peak power output levels were not altered. These data suggest that while
this level of inspiratory resistance may not diminish achievement of maximal
power output and aerobic capabilities for short durations (>10 minutes), it does
enhance the subjects' perceived sense of effort during prolonged exercise.
Consequently, while wearing CB masks, individuals engaged in military tasks
requiring high levels of physical exertion for sustained durations are subject to
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performance degradation. This is consistent with the observations of Lotens
(36), who observed that performance is dependent on the magnitude of the

breathing resistance as well as the duration of the task.

2. EXTERNAL DEAD SPACE

Effective gas exchange in the lungs requires an adequate amount of fresh
air entering the alveoli with each breath. Consequently, each tidal volume is
composed of an anatomical dead space volume (the air in the airways at the end
of expiration) and an alveolar volume. In a normal adult male the anatomical
dead space has an internal volume of about 150 ml. The alveolar volume is
increased or decreased depending on the metabolic needs of the subject. The
external dead space is an extension of a subject's anatomic dead space. It is the
volume of expired air contained within the mask which during the next
inspiration must be moved into the alveoli before any f{fresh, filtered
environmental gas can enter. When a soldier dons a CB mask, he artificially
increases his dead space volume. If the soldier does not increase his tidal
volume, then the volume of fresh air entering the alveoli will decrease for a
given breath. Bartlett et al. (4) found that minute ventilation increased when
the external dead space exceeded 50 ml. They also observed a nearly linear
relationship between external dead space volume and ventilation during
submaximal exercise. When the external dead space is increased (e.g., by
wearing a CB mask) the soldier initially inspires a larger fraction of carbon
dioxide enriched gas. As the alveolar CO3 increases, so does the arterial partial
pressure of COp (P,CO3). The stimulus to increase minute ventilation in
response to added external dead space is this elevation in arterial CO2 termed
"hypercapnic drive". The increased P,CO; stimulates the peripheral and central
chemoreceptors, which increase ventilatory drive via the respiratory control
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centers in the brainstem. Since the ventilatory sensitivity to CO varies greatly
between individuals, a given volume of external dead space can produce a wide
range of ventilatory responses.

Modern CB masks are designed to minimize the size of the external dead
space. However, dead spaces between 300-500 ml are common to CB masks.
Furthermore, a poor seal of the mask's nose cup or internal partitions with the
wearer's face can result in internal mask leaks, which may increase the volume
of the external dead space. Craig et al. (13) have shown that an increase in
inhaled COj is not well tolerated when combined with increased resistance.
Since the effect of increased dead space is increased minute ventilation, tasks
requiring aerobic performance can be degraded by the sustained increase of
ventilation and the additional work of breathing. Furthermore, specialized tasks
which require precise control over breathing motions (i.e., sharpshooting, etc.)

can be hindered by the responses to external dead space.

3. THERMAL STRESS OF THE CB MASK AND HOOD

The CB mask will have to be worn in a variety of environmental extremes.
In warm environments, the addition of a CB mask and its associated hood to the
NBC protective overgarment will increase the heat stress level imposed on the
soldier. This increased heat stress can limit the soldier's performance of
military tasks by increasing physiological and psychological strain.

Physical Effects. The transfer of heat from the body via the head is simply

a function of the surface area available. Since the head constitutes less than
10% of the body surface area, the proportion of the total body heat loss by the
head is generally relatively small. However, when any clothing, and in particular

chemical protective overgarments, are worn the relative contribution of the
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head to total body heat loss increases as the other areas of the body are covered.
Consequently, wearing a CB mask and hood over the head can seriously reduce
the already limited heat loss capability of the body. In a study done by the U.S.
Army (19) with an air motion of 0.3 m-s'l, the insulating air layer around a bare
head was reported as 0.64 clo units. The evaporative moisture permeability (i)
was 0.62 yielding a permeability index ratio (im/clo) value of 0.97; i.e., sweat
evaporation cooling from the bare head is only 3 percent less than the maximum
evaporative cooling capacity of the environment. When the standard U.S. M-l
helmet was worn, the i /clo value dropped to 0.43 indicating greater than a fifty
percent reduction in heat transfer from the head.

Subsequently an evaluation of the U.S. MI17 mask, alone and with the M6
protective hood, was conducted (22) to discriminate the heat stress effects of a
protective hood from the heat stress effects of the CB mask. In still air, the
standard U.S. helmet and M17 CB mask on a sweating sectional manikin head
yielded an ip/clo value of 0.13; with the addition of the impermeable M6 hood,
the permeability index ratio decreased to 0.02 i, /clo. Assuming that a soldier
is wearing a helmet, donning a CB mask without a hood can reduce heat transfer
from the head by approximately 70 percent and adding the hood can make the
total decrease in heat transfer greater than 90 percent. Furthermore, the M6
hood also covers the shoulders and seals the opening at the jacket's collar, thus
reducing evaporative heat transfer from the torso area by about 25%. If the
body is already having difficulty in meeting its requirements for heat loss; i.e. if
protective garments are being worn, this loss of heat transfer from the head and
torso could result in significantly increased core temperature and decreased

work performance as a result of the increased body heat storage.
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A soldier wearing a CB mask in direct sunlight may gain heat in the area of
his face by the mask's "green house effect". Belard (personal communication)
has shown that radiant energy entering through the mask's lenses can cause the
temperature within the mask to rise several degrees. CB masks with large lenses
or transparent facepieces collect more radiant energy. However, the ventilatory
induced air motion within the mask attenuates this green house effect. Heat
gain via this pathway maybe a problem, or atleast a nuisance, during tasks
requiring minimal movement and subsequently low ventilatory rate (e.g.,
manning an observation post, etc).

Physiological Effects. Several studies have attempted to evaluate the

effect of CB mask wear on the physiological responses during exercise in the
heat. Robinson and Gerking (52) studied, in two heat acclimmated subjects, the
effects of CB masks on sweat rate, heart rate and body temperature in both
hot/wet (T, = 30.5°C, po = 27.7°C) and hot/dry (T, = 45°C, po = 269C)
environments. In both environments the subjects wore jungle fatigues, and
exercised for two hours (~350 W). Wearing a CB mask and impermeable hood
elevated sweat rate by about 23% above the no mask and hood controls in the
hot/wet and by about 16% in the hot/dry environment. Mean skin temperature
was increased, but core temperature was not further elevated when the mask and
hood were worn. Finally, heart rate tended to be higher with the mask on.
Similar results were obtained in a British study (39) in which the heat
stress of an 56 respirator was evaluated in four heat acclimated subjects in a
test environment of T, = 34.09C and Tgp = 25.59°C. The exercise consisted of
120 minutes of bench stepping, which yielded a work rate of ~230-350 watt. The
subjects were tested with and without the 56 CB mask wearing an Army tropical
khaki uniform or the same uniform with the UK No. 1, Mk 1, NBC protective
overgarment and neoprene gloves. Final exercise sweating ‘rates and
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heart rates were significantly elevated when wearing the CB mask compared to
the no mask condition. However, the CB mask had a significant effect on final
exercise rectal temperature only when the CB protective overgarment was worn.
Finally, with both uniforms, wearing the mask elevated skin temperature. The
authors also demonstrated that as the total sweat loss increased, that portion
attributed to wearing the mask decreased. However, as rectal temperature
increased, the effect on rectal temperature attributed to the mask significantly
increased. Finally, the authors concluded that the elevated heart rate measured
during mask wear was due to the mask and could not be attributed to an
elevation in core temperature.

James et al. (28) recently evaluated the effects of two industrial
respirators on physiological résponses to work in the heat. Five unacclimatized
subjects wearing trousers and long-sleeved shirts performed one hour treadmill
exercise tests at two work rates (58 and 116 W) and in two environmental
conditions (Tg = 259C, Tqgp = 140C and T, = 43.3°C and Ty, = 14°C). These four
tests were conducted with the subjects wearing either a half face or full face
air-purifying respirator or a Collins large mouthpiece and nose clip ("no mask"
condition). No hood was worn with any of the masks. When compared to the "no
mask" condition, both masks significantly elevated heart rate, by about 3
percent. Core (oral) temperature was significantly elevated (0.33°C) during the
116 watt exercise while wearing the full facepiece respirator compared to the
no mask condition. Likewise, the full facepiece respirator increased minute
ventilation about 18 percent compared to the no mask control. The authors
attributed this minute ventilation elevation to the large dead space of the full
facepiece mask. Neither mask had any effect on whole body sweat rate or
metabolic rate in either the comfortable or the hot dry environment which
should not be surprising in view of the clothing worn and the low ventilatory
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demand of the work. However, the authors concluded that the greater dead
space volume and surface area covered by the full facepiece mask is associated
with a greater physiological strain than when the half-mask type of respirator is
used. Belard (personal communication) has observed that sweating under the CB
mask and hood causes an uncomfortable accumulation of liquid which soaks the
chin. Also, it has been reported that sweat may penetrate the filter elements in
CB masks which contain the filters within the mask facepiece (e.g., U.S. M17).
This can cause increased inspiratory resistance and degradate the f{ilters
protective function.

Psychological Effects. Aside from the actual physiological strain imposed

by wearing CB masks in warm environments, there exists the psychological
acceptability of a CB mask in these environments. Factors such as the dry bulb
temperature and dew point of the air inside the CB mask, and facial skin
wettedness, affect the temperature and comfort sensations for the whole body.
In a recent study by Gwosdow et al. (24), six subjects wearing ventilated masks
during rest and exercise in a wide range of environmental conditions were asked
to rate their whole body thermal sensation and perception of breathing effort.
Increasing the dry bulb or dew point temperatures in the mask decreased whole
body thermal acceptability. The whole body thermal sensations were directly
correlated with upper lip skin temperature. Moreover, the subjects perceived
breathing to be more difficult with increasing intra-mask temperature and
humidity. CB mask acceptability and the capacity to perform essential military
tasks may be severely degraded by the interaction of soldiers' psychological
acceptability of the CB mask and the increased physiological strain due to CB
mask wear. In military vehicles containing microclimate cooling systems,
consideration should be given to the temperature and humidity control of the
cooling air ventilating the facepiece.
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4. VISUAL LIMITATIONS

The successful employment of surveillance and weapon systems on a
modern battlefield, requires minimal interference with a soldier's functional
vision. Wearing a CB mask can significantly degrade a soldier's vision, resulting
in substandard performance of military tasks (11,41). Degradation of functional
vision can be the result of several factors, including: 1) visual field restrictions;
2) reduced dynamic visual acuity; 3) dark adaptation; and 4) altered space
perception. Also, it should be noted that, under certain circumstances, CB mask
wear can contribute to the development of conjunctivitis; masks which are
ventilated by a blower can produce a flow of dry air across the eye which could
cause irritation of the surface of the eyeball.

Visual Field Restrictions. Standard clinical procedures employing

Projection Perimeter apparatus have been used to obtain visual field
measurements. Usually, the visual field measurements made when wearing a CB
mask are compared to the "no mask" (unrestricted) measurements. A CB mask
reduces the wearer's visual field; the magnitude of the reduction is dependent
upon the design of the facepiece and its fit on the subject's face. Three basic
lens designs are usually used in CB masks. These include: 1) two separate
binocular lenses; 2) a single piece windshield lens; and 3) a single full facepiece
(panoramic) iens. Masks using the two binocular lenses (U.S. M-17, British S6)
generally demonstrate the greatest decrement in visual field. This style of lens
particularly restricts the inferior medial and inferior oblique portions of the
visual field (21,64). All styles of lenses tend to restrict the inferior visual field.
This common observation can probably be attributed to CB masks incorporating a
voicemitter assembly and/or exhalation valve on the exterior of the oral-nasal
portion of the facepiece; this exterior assembly blocks the wearer's inferior
visual field.
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A second factor which can affect the wearer's visual field is proper fit of
the mask on the user. For example, if the surface of the lens is positioned far
ahead of the eyes, then the visual field is further restricted. An additional
factof which may affect the wearer's visual field is the wear of corrective lens.
Most CB masks provide for the use of spectacle inserts which provide eyeglass
wearers with the necessary refractive power to maintain normal vision when
wearing a CB mask. The potential exists for users of spectacle inserts to
experience further degradation of their visual field due to the interference with
peripheral vision normally attributed to corrective lens wear. Finally, the visual
field can be further reduced by fogging of the mask's lenses or accumulation of
opaque material (dirt, frost) on the lenses.

Alignment of the eye with weapon and surveillance systems optical sights
can be hindered by the size and shape of a CB mask. This could decrease the
effectiveness of these systems. However, performance of certain tasks may be
enhanced by CB mask wear. The narrower field of view may eliminate
distractions and help the soldier concentrate on his task. Hand-eye coordination
tasks may be degraded by CB mask. However, a recent study by Johnson et al.
(31) showed that wearing a CB mask and hood (M17A1) did not impair the manual
dexterity of soldiers performing the O'Connor Five Finger Dexterity Test or the
Purdue Pegboard Assembly Test. Since both of these tests only require a small
field of vision, they are probably not good measures of manual dexterity tasks
which occur over a large visual field.

Dynamic Visual Acuity. CB mask wear has been shown to reduce the

dynamic visual acuity of the wearer (64). The typical test of dynamic visual
acuity requires the subject to track a target at a constant rate across the visual
field, while the target angular size and direction of travel are randomly varied.
In a study done by the U.S. Army (64), where wearing a CB mask the target
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